Machine Learning

Machine Learning with Graphs: Free online course(Stanford)

Are you interested in learning the concepts of machine learning with Graphs?

Stanford University is offering a free online course in machine learning titled Machine Learning with Graphs (CS224W). The lecture videos will be available on Canvas for all the enrolled Stanford students. The lecture slides and assignments will be posted online as the course progresses. This class will be offered next in Fall 2022. After completing this course, you will be able to apply machine learning methods to a variety of real-world problems.

The course titled Machine learning with Graphs, will teach you how to apply machine learning methods to graphs and networks. Complex data can be represented as a graph of relationships between objects. Such networks are a fundamental tool for modeling social, technological, and biological systems. This course focuses on the computational, algorithmic, and modeling challenges specific to the analysis of massive graphs. By means of studying the underlying graph structure and its features, students will be introduced to machine learning techniques and data mining tools apt to reveal insights on a variety of networks. This course will be a deep dive into the theory and practice of machine learning with graphs. You will learn how to apply modern machine learning techniques to large, complex data sets. The course is designed for students and professionals with some experience in machine learning or a related field. The topics include some of the following:

  • Representation learning and Graph Neural Networks
  • Algorithms for the World Wide Web
  • Reasoning over Knowledge Graphs
  • Influence maximization; disease outbreak detection, social network analysis.

The following books are recommended as optional reading material.

Go ahead and get yourself enrolled to learn the concepts related to machine learning with Graphs.

Ajitesh Kumar

I have been recently working in the area of Data analytics including Data Science and Machine Learning / Deep Learning. I am also passionate about different technologies including programming languages such as Java/JEE, Javascript, Python, R, Julia, etc, and technologies such as Blockchain, mobile computing, cloud-native technologies, application security, cloud computing platforms, big data, etc. I would love to connect with you on Linkedin. Check out my latest book titled as First Principles Thinking: Building winning products using first principles thinking.

Recent Posts

Mathematics Topics for Machine Learning Beginners

In this blog, you would get to know the essential mathematical topics you need to…

6 days ago

Questions to Ask When Thinking Like a Product Leader

This blog represents a list of questions you can ask when thinking like a product…

1 week ago

Three Approaches to Creating AI Agents: Code Examples

AI agents are autonomous systems combining three core components: a reasoning engine (powered by LLM),…

2 weeks ago

What is Embodied AI? Explained with Examples

Artificial Intelligence (AI) has evolved significantly, from its early days of symbolic reasoning to the…

2 months ago

Retrieval Augmented Generation (RAG) & LLM: Examples

Last updated: 25th Jan, 2025 Have you ever wondered how to seamlessly integrate the vast…

5 months ago

How to Setup MEAN App with LangChain.js

Hey there! As I venture into building agentic MEAN apps with LangChain.js, I wanted to…

5 months ago