This is a list of topics which can be covered as part of machine learning course curriculum. In other words, it is a representation of outline of a machine learning course. This course outline is created by taking into considerations different topics which are covered as part of machine learning courses available on Coursera.org, Edx, Udemy etc. In case, you are planning to take up a machine learning course in near future, make sure that most of the following is covered.

An Outline to Machine Learning Course Curriculum

  • Introduction to machine learning
  • Regression
    • Linear Regression with One Variable
    • Linear Regression with Multiple Variables
  • Logistic Regression
  • Introduction to Neural Networks
    • Representation
    • Learning
  • Support Vector Machines (SVM)
  • Unsupervised learning (Clustering and Retrieval)
  • Dimensionality reduction: Dimensionality reduction is the process of reducing the number of random variables under consideration[1] by obtaining a set of principal variables. Following topics needs to be covered:
    • Feature selection
    • Feature extraction: Introduction to different techniques such as some of the following for transforming data in high-dimensional space to a space of fewer dimensions.
      • Principal Component Analysis (PCA)
      • Kernal PCA
      • Graph based kernel PCA
      • Linear discriminant analysis (LDA)
      • Generalized discriminant analysis (GDA)
  • Anomaly detection (also termed as Outlier detection)
    • Unsupervised anomaly detection
    • Supervised anomaly detection
    • Semi-supervised anomaly detection
  • Recommender systems
    • Collaborative filtering
    • Content-based filtering
    • Hybrid recommender systems
  • Machine Learning Examples/Case Studies

The following is a list of concepts which would be good to understand before one gets started with learning machine learning concepts.

  • Introduction to Linear Algebra
  • Regularization
  • Introduction to probability and statistics


Latest posts by Ajitesh Kumar (see all)
Ajitesh Kumar

I have been recently working in the area of Data analytics including Data Science and Machine Learning / Deep Learning. I am also passionate about different technologies including programming languages such as Java/JEE, Javascript, Python, R, Julia, etc, and technologies such as Blockchain, mobile computing, cloud-native technologies, application security, cloud computing platforms, big data, etc. I would love to connect with you on Linkedin. Check out my latest book titled as First Principles Thinking: Building winning products using first principles thinking.

Recent Posts

What are AI Agents? How do they work?

Artificial Intelligence (AI) agents have started becoming an integral part of our lives. Imagine asking…

2 weeks ago

Agentic AI Design Patterns Examples

In the ever-evolving landscape of agentic AI workflows and applications, understanding and leveraging design patterns…

2 weeks ago

List of Agentic AI Resources, Papers, Courses

In this blog, I aim to provide a comprehensive list of valuable resources for learning…

2 weeks ago

Understanding FAR, FRR, and EER in Auth Systems

Have you ever wondered how systems determine whether to grant or deny access, and how…

2 weeks ago

Top 10 Gartner Technology Trends for 2025

What revolutionary technologies and industries will define the future of business in 2025? As we…

2 weeks ago

OpenAI GPT Models in 2024: What’s in it for Data Scientists

For data scientists and machine learning researchers, 2024 has been a landmark year in AI…

3 weeks ago