Categories: AIMachine Learning

Machine Learning Cheat sheet (Stanford)

Here is a great set of cheat sheet on some of the following topics:

  • Supervised learning
  • Unsupervised learning
  • Deep learning
  • Probability and statistics
  • Linear algebra
  • Tips and tricks including performance metrics

https://stanford.edu/~shervine/teaching/cs-229/

Hope you liked the cheat sheets on different topics of machine learning and data science.

Ajitesh Kumar

I have been recently working in the area of Data analytics including Data Science and Machine Learning / Deep Learning and BI. I would love to connect with you on Linkedin. Check out my books titled as Designing Decisions, and First Principles Thinking.

Recent Posts

The Watermelon Effect: When Green Metrics Lie

We’ve all been in that meeting. The dashboard on the boardroom screen is a sea…

5 days ago

Coefficient of Variation in Regression Modelling: Example

When building a regression model or performing regression analysis to predict a target variable, understanding…

3 months ago

Chunking Strategies for RAG with Examples

If you've built a "Naive" RAG pipeline, you've probably hit a wall. You've indexed your…

3 months ago

RAG Pipeline: 6 Steps for Creating Naive RAG App

If you're starting with large language models, you must have heard of RAG (Retrieval-Augmented Generation).…

3 months ago

Python: List Comprehension Explained with Examples

If you've spent any time with Python, you've likely heard the term "Pythonic." It refers…

3 months ago

Large Language Models (LLMs): Four Critical Modeling Stages

Large language models (LLMs) have fundamentally transformed our digital landscape, powering everything from chatbots and…

6 months ago