Following are the key plots described later in this article:
Following is the description for above mentioned plots along with code examples based on base R package. Note that each of the these plots could be done using different commands when using ggplot2 package.
hist(USArrests$UrbanPop, main="Histogram - Urban Population", xlab="Urban Population")
plot( variableAlongXAxis, variableAlongYAxis, data="DataSet", main="Plot Title", xlab="Label for X-Axis", ylab="Label for Y Axis" )
# Following command can as well be used
plot( responseParameter ~ predictorParameter, data="DataSet", main="Plot Title", xlab="Label for X-Axis", ylab="Label for Y Axis" )
Lets take an example from default data available in R package. Following R command prints the Scatterplot shown below:
plot( pressure ~ temperature, data=pressure, main="Pressure vs Temperature", xlab="Temperature", ylab="Pressure")
boxplot(pressure$pressure, main="Pressure Boxplot", ylab="Pressure")
Last updated: 25th Jan, 2025 Have you ever wondered how to seamlessly integrate the vast…
Hey there! As I venture into building agentic MEAN apps with LangChain.js, I wanted to…
Software-as-a-Service (SaaS) providers have long relied on traditional chatbot solutions like AWS Lex and Google…
Retrieval-Augmented Generation (RAG) is an innovative generative AI method that combines retrieval-based search with large…
The combination of Retrieval-Augmented Generation (RAG) and powerful language models enables the development of sophisticated…
Have you ever wondered how to use OpenAI APIs to create custom chatbots? With advancements…