Following are code samples on Google App Engine Datastore Query and how to get entities by id and based on filters.
Pay attention to the code “datastore.get(KeyFactory.createKey( “savedreport”, reportId). “savedreport” is the name of entity.
DatastoreService datastore = DatastoreServiceFactory.getDatastoreService();
Entity entity = null;
try {
entity = datastore.get(KeyFactory.createKey("savedreport", reportId));
} catch(EntityNotFoundException e) {
e.printStackTrace();
}
Pay attention to “setFilter” method
Filter createdByFilter = new FilterPredicate("created_by", FilterOperator.EQUAL, userId );
Query query = new Query("sqm").setFilter( createdByFilter );
DatastoreService datastore = DatastoreServiceFactory.getDatastoreService();
List entities = datastore.prepare(query).asList( FetchOptions.Builder.withLimit( count ) );
Pay attention to usage of multiple FilterPredicate methods and CompositeFilterOperator and setFilter method called on Query.
Filter dateMinFilter = new FilterPredicate("sprint_enddate", FilterOperator.GREATER_THAN_OR_EQUAL, beginDate );
Filter dateMaxFilter = new FilterPredicate("sprint_enddate", FilterOperator.LESS_THAN_OR_EQUAL, endDate );
Filter nameFilter = new FilterPredicate("project_id", FilterOperator.EQUAL, projectId );
Filter createdByFilter = new FilterPredicate("created_by", FilterOperator.EQUAL, createdBy );
Filter rangeFilter = CompositeFilterOperator.and( nameFilter, createdByFilter, dateMinFilter, dateMaxFilter );
Query query = new Query("sqm").setFilter( rangeFilter );
DatastoreService datastore = DatastoreServiceFactory.getDatastoreService();
List entities = datastore.prepare(query).asList( FetchOptions.Builder.withLimit( count ) ); When building a regression model or performing regression analysis to predict a target variable, understanding…
If you've built a "Naive" RAG pipeline, you've probably hit a wall. You've indexed your…
If you're starting with large language models, you must have heard of RAG (Retrieval-Augmented Generation).…
If you've spent any time with Python, you've likely heard the term "Pythonic." It refers…
Large language models (LLMs) have fundamentally transformed our digital landscape, powering everything from chatbots and…
As Large Language Models (LLMs) evolve into autonomous agents, understanding agentic workflow design patterns has…