A/B testing is a strategy in marketing in which two versions, A and B, (the control and the treatment) are tested against each other. A/B testing, as the names implies, is a simple randomized experiment with two variants/versions, A and B, one of which version A might be currently used version (control) and, version B (treatment) is modified in some respect to study/test the users’ behavior. These tests are also called as split tests. These tests involve modification some of the following attributes of page to gaze/measure the users’ response:
Following are some use-case scenarios for A/B testing:
All of the above objectives are achieved using the A/B testing infrastructure, namely AirLock, that Facebook engineering team created in-house. Airlock is a testing framework that lets Facebook Engg. team compare metric data from each version of the app and the various tests, and then decide which version to ship or how to iterate further. With AirLock, Facebook achieves some of the following goals of A/B testing:
Following are different class of companies who should consider A/B testing:
Following are different startups which are innovating with A/B testing and providing tools for websites to run such tests:
[adsenseyu1]
Large language models (LLMs) have fundamentally transformed our digital landscape, powering everything from chatbots and…
As Large Language Models (LLMs) evolve into autonomous agents, understanding agentic workflow design patterns has…
In today's data-driven business landscape, organizations are constantly seeking ways to harness the power of…
In this blog, you would get to know the essential mathematical topics you need to…
This blog represents a list of questions you can ask when thinking like a product…
AI agents are autonomous systems combining three core components: a reasoning engine (powered by LLM),…