A/B testing is a strategy in marketing in which two versions, A and B, (the control and the treatment) are tested against each other. A/B testing, as the names implies, is a simple randomized experiment with two variants/versions, A and B, one of which version A might be currently used version (control) and, version B (treatment) is modified in some respect to study/test the users’ behavior. These tests are also called as split tests. These tests involve modification some of the following attributes of page to gaze/measure the users’ response:
Following are some use-case scenarios for A/B testing:
All of the above objectives are achieved using the A/B testing infrastructure, namely AirLock, that Facebook engineering team created in-house. Airlock is a testing framework that lets Facebook Engg. team compare metric data from each version of the app and the various tests, and then decide which version to ship or how to iterate further. With AirLock, Facebook achieves some of the following goals of A/B testing:
Following are different class of companies who should consider A/B testing:
Following are different startups which are innovating with A/B testing and providing tools for websites to run such tests:
[adsenseyu1]
In recent years, artificial intelligence (AI) has evolved to include more sophisticated and capable agents,…
Adaptive learning helps in tailoring learning experiences to fit the unique needs of each student.…
With the increasing demand for more powerful machine learning (ML) systems that can handle diverse…
Anxiety is a common mental health condition that affects millions of people around the world.…
In machine learning, confounder features or variables can significantly affect the accuracy and validity of…
Last updated: 26 Sept, 2024 Credit card fraud detection is a major concern for credit…