In e-commerce, machine learning can be used to improve a number of decisions thereby resulting in creating a positive business impact. Not only does it help e-commerce organizations increase conversion rates and find the best deals for their customers, but it also helps them understand the customer better. This blog post will look at various different use cases where AI/machine learning and deep learning have been used in eCommerce.
Here are some key areas in eCommerce where AI/machine learning can be leveraged:
eCommerce Machine Learning use cases are a great way to improve the e-commerce customer experience and drive more sales. There are several types of machine learning use cases such as product recommendation, product search, customer churn prediction, product categorization, etc. eCommerce businesses can also utilize chatbots for answering questions about the products they sell as well as using machine learning algorithms to predict future purchases or lifetime value of their customers that have no formal agreements with them. If you like to learn more, please feel free to reach out.
When building a regression model or performing regression analysis to predict a target variable, understanding…
If you've built a "Naive" RAG pipeline, you've probably hit a wall. You've indexed your…
If you're starting with large language models, you must have heard of RAG (Retrieval-Augmented Generation).…
If you've spent any time with Python, you've likely heard the term "Pythonic." It refers…
Large language models (LLMs) have fundamentally transformed our digital landscape, powering everything from chatbots and…
As Large Language Models (LLMs) evolve into autonomous agents, understanding agentic workflow design patterns has…