machine learning
Simply speaking, Machine Learning is a set of artifical intelligence techniques which are used to solve one of the following problems based on the examples in hand:
Machine learning is a key aspect of data science. It allows data scientist to apply existing data sets to one of the machine learning algorithm and predict based on that. In other words, a person wanting to become a data scientist must learn machine learning algorithms to be able to predict/recommend.
Following are key steps in machine learning:
Above steps of machine learning could be represented using following, from API perspective. Thus, whether using R, or pyhton APIs, following is how the API structure would look like:
# Model created based on a given data set
model = createModelAPI(existingDataSet)
# Model is fed with new dataset, newDataSet which gives predicted output, predictedOutput
predictedOutput = createPredictionAPI( model, newDataSet )
Lets take an example of linear regression using R programming console. Look at the code below:
# Linear regression model
model = lm( price ~ carat, data=diamonds )
price = predict( model, newData )
# Multiple linear regression model
model = lm( price ~ carat + cut + color, data=diamonds )
price = predict( model, newData )
Large language models (LLMs) have fundamentally transformed our digital landscape, powering everything from chatbots and…
As Large Language Models (LLMs) evolve into autonomous agents, understanding agentic workflow design patterns has…
In today's data-driven business landscape, organizations are constantly seeking ways to harness the power of…
In this blog, you would get to know the essential mathematical topics you need to…
This blog represents a list of questions you can ask when thinking like a product…
AI agents are autonomous systems combining three core components: a reasoning engine (powered by LLM),…