Simply speaking, Machine Learning is a set of artifical intelligence techniques which are used to solve one of the following problems based on the examples in hand:
Machine learning is a key aspect of data science. It allows data scientist to apply existing data sets to one of the machine learning algorithm and predict based on that. In other words, a person wanting to become a data scientist must learn machine learning algorithms to be able to predict/recommend.
Following are key steps in machine learning:
Above steps of machine learning could be represented using following, from API perspective. Thus, whether using R, or pyhton APIs, following is how the API structure would look like:
# Model created based on a given data set
model = createModelAPI(existingDataSet)
# Model is fed with new dataset, newDataSet which gives predicted output, predictedOutput
predictedOutput = createPredictionAPI( model, newDataSet )
Lets take an example of linear regression using R programming console. Look at the code below:
# Linear regression model
model = lm( price ~ carat, data=diamonds )
price = predict( model, newData )
# Multiple linear regression model
model = lm( price ~ carat + cut + color, data=diamonds )
price = predict( model, newData )
In recent years, artificial intelligence (AI) has evolved to include more sophisticated and capable agents,…
Adaptive learning helps in tailoring learning experiences to fit the unique needs of each student.…
With the increasing demand for more powerful machine learning (ML) systems that can handle diverse…
Anxiety is a common mental health condition that affects millions of people around the world.…
In machine learning, confounder features or variables can significantly affect the accuracy and validity of…
Last updated: 26 Sept, 2024 Credit card fraud detection is a major concern for credit…