algebra topics for data science
Following are the key high level topics which are elaborated later in this article:
Following are some of the key topics in basic algebra that one may need to brush up on. The understanding on below concepts forms the backbone of understanding any machine learning algorithm. If you are not excited by topics listed below, linear algebra would surely scare you much.
As per Wikipedia page on Linear Algebra, here goes the definition: Linear algebra is the branch of mathematics concerning vector spaces and linear mappings between such spaces. It includes the study of lines, planes, and subspaces, but is also concerned with properties common to all vector spaces.. Linear algebra, in general, is very useful for modeling, simulations etc which is what is done while working with machine learning algorithms. Following are some of the key topics in linear algebra that one may need to brush up:
When building a regression model or performing regression analysis to predict a target variable, understanding…
If you've built a "Naive" RAG pipeline, you've probably hit a wall. You've indexed your…
If you're starting with large language models, you must have heard of RAG (Retrieval-Augmented Generation).…
If you've spent any time with Python, you've likely heard the term "Pythonic." It refers…
Large language models (LLMs) have fundamentally transformed our digital landscape, powering everything from chatbots and…
As Large Language Models (LLMs) evolve into autonomous agents, understanding agentic workflow design patterns has…