Lets load a set of messages along with appropriate classification using following command.
messages <- read.table( file.choose(), sep="\t", stringsAsFactors=FALSE)
The messages data frame could have two features, such as type and text where each piece of text is associated with an appropriate type. Once done, lets go ahead and create a Corpus object out of all the message text. Following command helps to create a Corpus object. For those of you who are new to Corpus object, note that it comes as part of famous text mining R package named as “tm”.
corpus <- Corpus(VectorSource(messages$text))
Once Corpus object is created it is time to clean the text.
Following is cleaned as part of text cleaning activity:
Following is command set that achieves above objectives:
# Change all the words to lowercase
corpus_clean <- tm_map(corpus, content_transformer(tolower))
# Remove all the numbers
corpus_clean <- tm_map(corpus_clean, removeNumbers)
# Remove the stop words such as to, and, or etc.
corpus_clean <- tm_map(corpus_clean, removeWords, stopwords())
# Remove punctuation
corpus_clean <- tm_map(corpus_clean, removePunctuation)
# Remove whitespaces
corpus_clean <- tm_map(corpus_clean, stripWhitespace)
Artificial Intelligence (AI) agents have started becoming an integral part of our lives. Imagine asking…
In the ever-evolving landscape of agentic AI workflows and applications, understanding and leveraging design patterns…
In this blog, I aim to provide a comprehensive list of valuable resources for learning…
Have you ever wondered how systems determine whether to grant or deny access, and how…
What revolutionary technologies and industries will define the future of business in 2025? As we…
For data scientists and machine learning researchers, 2024 has been a landmark year in AI…