In the set of commands listed below, a data frame, message_text, is used which is a set of text data, loaded using read.table command such as following:
messages_text <- read.table( file.choose(), sep="\t", stringsAsFactors=FALSE)
Using the commands listed below, following is achieved:
# Find the summary information about the data frame loaded using command such as
# read.csv, read.table etc.
str(messages_text)
# Change the name of the columns to desired names; At times, during loading, the text file
# could start straight away with the data. And, when that happens, the features are names as V1, V2 etc.
# Thus, it may be good idea to name the features appropriately.
names(messages_text) <- c( "type", "text")
# as.factor command is frequenctly used to derive the categorical features as factor. When loaded,
# this variable is loaded as character vector.
messages_text$type <- as.factor(messages_text$type)
# table command when used on variable of class, factor, gives number of occurences of
# different categories
table(messages_text$type)
# prop.table command when used on categorical variable (of class, factor) gives the percentage occurences of
# different categories
prop.table(table(messages_text$type))*100
# round command with prop.table gives the percentage occurence of categorical variable,
# rounded by number of digits specified in the command
round(prop.table(table(messages_text$type))*100, digits=2)
Artificial Intelligence (AI) agents have started becoming an integral part of our lives. Imagine asking…
In the ever-evolving landscape of agentic AI workflows and applications, understanding and leveraging design patterns…
In this blog, I aim to provide a comprehensive list of valuable resources for learning…
Have you ever wondered how systems determine whether to grant or deny access, and how…
What revolutionary technologies and industries will define the future of business in 2025? As we…
For data scientists and machine learning researchers, 2024 has been a landmark year in AI…