Following are the key points described later in this article:
Key aspects of applying KMeans algorithm are following:
Thus, it may so happen that you may use only a select set fo features from a given data set and do the analysis on those features set.
someDF_z <- as.data.frame(lapply(someDF, scale))
There is a kmeans() function in stats package in R. Note that stats package is included by default in R installation. If it is not there, you may want to install this package.
Following is the formulae:
# KMeans function applied on some data frame, someDF, where only a # set of features having numeric values were selected; Notice 4:9 kmeansDF <- kmeans(someDF[4:9], 5)
In this blog, you would get to know the essential mathematical topics you need to…
This blog represents a list of questions you can ask when thinking like a product…
AI agents are autonomous systems combining three core components: a reasoning engine (powered by LLM),…
Artificial Intelligence (AI) has evolved significantly, from its early days of symbolic reasoning to the…
Last updated: 25th Jan, 2025 Have you ever wondered how to seamlessly integrate the vast…
Hey there! As I venture into building agentic MEAN apps with LangChain.js, I wanted to…