Following are the key points described later in this article:
Key aspects of applying KMeans algorithm are following:
Thus, it may so happen that you may use only a select set fo features from a given data set and do the analysis on those features set.
someDF_z <- as.data.frame(lapply(someDF, scale))
There is a kmeans() function in stats package in R. Note that stats package is included by default in R installation. If it is not there, you may want to install this package.
Following is the formulae:
# KMeans function applied on some data frame, someDF, where only a # set of features having numeric values were selected; Notice 4:9 kmeansDF <- kmeans(someDF[4:9], 5)
Last updated: 25th Jan, 2025 Have you ever wondered how to seamlessly integrate the vast…
Hey there! As I venture into building agentic MEAN apps with LangChain.js, I wanted to…
Software-as-a-Service (SaaS) providers have long relied on traditional chatbot solutions like AWS Lex and Google…
Retrieval-Augmented Generation (RAG) is an innovative generative AI method that combines retrieval-based search with large…
The combination of Retrieval-Augmented Generation (RAG) and powerful language models enables the development of sophisticated…
Have you ever wondered how to use OpenAI APIs to create custom chatbots? With advancements…