lm_model <- lm(y ~ x1 + x2, data=as.data.frame(cbind(y,x1,x2)))
glm_model <- glm(y ~ x1+x2, family=binomial(link="logit"), data=as.data.frame(cbind(y,x1,x2)))
kmeans_model <- kmeans(x=X, centers=m)
knn_model <- knn(train=X_train, test=X_test, cl=as.factor(labels), k=K)
naiveBayes_model <- naiveBayes(y ~ x1 + x2, data=as.data.frame(cbind(y,x1,x2)))
cart_model <- rpart(y ~ x1 + x2, data=as.data.frame(cbind(y,x1,x2)), method="class")
svm_model <- svm(x=X, y=as.factor(labels), kernel ="radial", cost=C)
ann_model <- neuralnet( y ~ x1 + x2 + x3, data=as.data.frame(cbind(y,x1,x2, x3)), hidden = 1)
Prediction could be made using following formula:
p <- compute( ann_model, as.data.frame(cbind(x1,x2)) )
apriori_model <- apriori(as.matrix(sampleDataset), parameter = list(supp = 0.8, conf = 0.9))
boost_model <- ada(x=X, y=labels)
For most of the above formulas including linear regression model, one could use following function to predict:
predicted_values <- predict(some_model, newdata=as.data.frame(cbind(x1_test, x2_test)))
Last updated: 25th Jan, 2025 Have you ever wondered how to seamlessly integrate the vast…
Hey there! As I venture into building agentic MEAN apps with LangChain.js, I wanted to…
Software-as-a-Service (SaaS) providers have long relied on traditional chatbot solutions like AWS Lex and Google…
Retrieval-Augmented Generation (RAG) is an innovative generative AI method that combines retrieval-based search with large…
The combination of Retrieval-Augmented Generation (RAG) and powerful language models enables the development of sophisticated…
Have you ever wondered how to use OpenAI APIs to create custom chatbots? With advancements…