Linear Regression Interview Questions

These questions can be found as practice tests on our website, <u>https://vitalflux.com</u>, on this page, <u>40 Linear Regression Interview Questions for Data Scientists</u>.

1.	In regression, there is dependent variable and independent
	variable(s)
	• Simple linear, one, multiple
	• Multiple, multiple, one
	• Simple linear, one, one
_	• Multiple, one, multiple
2.	In regression, there is dependent variable and independent
	variable(s)
	• Simple linear, multiple, one
	• Simple linear, one, multiple
	• Multiple, one, multiple
-	• Multiple, multiple
3.	It is OK to add independent variables to a multi-linear regression model as it increases the
	explained variance of the model and makes model more effcient
	• True
	• False
4.	Linear or multilinear regression helps in predicting
	 Continuous valued output
_	• Discrete valued output
5.	Regression analysis helps in studying relationship between variables.
	• Deterministic
	• Statistical
6.	Regression analysis helps in doing which of the following?
	• Causal analysis
	• Effects in forecasting
	 Forecasting trends
_	• All of the above
7.	The best fit line is achieved by finding values of the parameters which minimizes the sum
	of
	• Prediction errors
0	• Squared prediction errors
8.	Best fit line is also termed as
	Maximum squares regression line
•	• Least squares regression line

- 9. Which of the following can be used to understand the statistical relationship between dependent and independent variables in linear regression?
 - Coefficient of determination
 - Correlation coefficient
 - Both of the above
 - None of the above

- 10. It is absolutely OK to state that correlation does imply causation
 - True
 - False
- 11. The value of coefficient of determination, R-squared, is _____
 - \circ Less than 0
 - Greater than 1
 - Between 0 and 1
- 12. Which of the following can be used to understand the positive or negative relationship between dependent and independent variables
 - Coefficient of determination
 - Pearson correlation coefficient
- 13. The goal of the regression model is to achieve the R-squared value _____
 - Closer to 0
 - Closer to 1
 - More than 1
 - Less than 1
- 14. Pearson correlation coefficient is _____ to coefficient of determination
 - Directly proportional
 - Inversely proportional
- 15. Pearson correlation coefficient does always have positive value
 - True
 - False
- 16. Value of Pearson correlation coefficient near to zero represents the fact there is a stronger relationship between dependent and independent variables
 - True
 - False
- 17. Population correlation coefficient and sample correlation coefficient are one and the same
 - True
 - False
- 18. The value of Pearson correlation coefficient falls in the range of _____
 - 0 and 1
 - 0 and -1
 - -1 and 1
 - 1 and 2
- 19. The value of correlation coefficient and R-squared remains same for all samples of data
 - True
 - False
- 20. The large value of R-squared can be safely interpreted as the fact that estimated regression line fits the data well.
 - True
 - False
- 21. The value of R-squared does not depend upon the data points; Rather it only depends upon the value of parameters
 - True
 - False
- 22. The value of correlation coefficient and coefficient of determination is used to study the strength of relationship in _____
 - Samples only

- Both Samples and Population
- Population only
- 23. Which of the following tests can be used to determine whether a linear association exists between the dependent and independent variables in a simple linear regression model?
 - o T-test
 - ANOVA F-test
 - Both of the abov
 - None of the abovee
- 24. In order to estimate population parameter, the null hypothesis is that the population parameter is to zero?
 - Equal
 - Not equal
- 25. Which of the following can be used for learning the value of parameters for regression model for population and not just the samples?
 - Hypothesis testing
 - Confidence intervals
 - Both of the above
 - None of the above
- 26. The value of R-Squared ______ with addition of every new independent variable?
 - May increase or decrease
 - Always increases
 - Always decreases
- 27. In order to reject the null hypothesis while estimating population parameter, p-value has to be _____
 - More than 0.05
 - Less than 0.05
- 28. The value of _____ may increase or decrease based on whether a predictor variable enhances the model or not
 - R-squared
 - Adjusted R-squared
- 29. The value of Adjusted R-squared ______ if the predictor variable enhances the model less than what is predicted by chance?
 - Increases
 - Decreases
- 30. In regression model t-tests, the value of t-test statistics is equal to _____?
 - Coefficient divided by Standard error of coefficient
 - Standard error of coefficient divided by coefficient
 - Coefficient plus standard error of coefficient
- 31. In ANOVA test for regression, degrees of freedom (regression) is _____
 - Equal to number of parameters being estimated
 - One more than the number of parameters being estimated
 - One less than the number of parameters being estimated
- 32. In ANOVA test for regression, degrees of freedom (regression) is
 - Equal to number of predictor variables
 - One more than the number of predictor variables
 - One less than the number of predictor variables
- 33. For SST as sum of squares total, SSE as sum of squared errors and SSR as sum of squares regression, which of the following is correct?

- SST = SSR SSE
- SST = SSR + SSE
- SST = SSR/SSE
- 34. The value of coefficient of determination is which of the following?
 - SSR / SST
 - SSE / SST
- 35. Mean squared error can be calculated as _____
 - Sum of squares error / degrees of freedom
 - Sum of squares regression/ degrees of freedom
 - Sum of squares total/ degrees of freedom
- 36. Sum of Squares Regression (SSR) is ____
 - Sum of Squares of predicted value minus average value of dependent variable
 - Sum of Squares of Actual value minus predicted value
 - Sum of Squares of Actual value minus average value of dependent variable
- 37. Sum of Squares Error (SSE) is _____
 - Sum of Squares of predicted value minus average value of dependent variable
 - Sum of Squares of Actual value minus predicted value
 - Sum of Squares of Actual value minus average value of dependent variable
- 38. Sum of Squares Total (SST) is ____
 - Sum of Squares of predicted value minus average value of dependent variable
 - Sum of Squares of Actual value minus predicted value
 - Sum of Squares of Actual value minus average value of dependent variable
- 39. _____ the value of sum of squares regression (SSR), better the regression model
 - Greater
 - Lesser
- 40. The objective for regression model is to minimize _____ and maximize _____
 - SSR, SSE
 - SSE, SSR
 - SSR, SST
 - SSE, SST