The article lists down the lessons learnt by Google Engg. team while they implemented Google BigTable, a distributed storage system, which is used to manage structured data of more than 60 Google products or so. Read further about Google BigTable on this page.
With distributed systems bound to be complex and the related codebase expected to evolve over a period of time, it may be good idea to keep the design and coding simple for ease of code maintenance and debugging. One could apply the KISS principle by breaking down the problem into smaller pieces and do the design and coding appropriately. Read more about KISS principle on some of the following pages:
While working with distributed systems, one might want to delay adding new features until it is clear how the new features will be used. This is similar to what is mentioned by YAGNI principle – “Always implement things when you actually need them, never when you just foresee that you need them.”
Large distributed systems are vulnerable to many types of failures, some of which are listed below. One should, therefore, plan to take care of each one of them in a diligent manner and not make any assumptions whatsoever.
While working with distributed systems, one may want to setup proper system-level monitoring to do a regular check on some of the following aspects:
In recent years, artificial intelligence (AI) has evolved to include more sophisticated and capable agents,…
Adaptive learning helps in tailoring learning experiences to fit the unique needs of each student.…
With the increasing demand for more powerful machine learning (ML) systems that can handle diverse…
Anxiety is a common mental health condition that affects millions of people around the world.…
In machine learning, confounder features or variables can significantly affect the accuracy and validity of…
Last updated: 26 Sept, 2024 Credit card fraud detection is a major concern for credit…