Quantum Computing

Great Quantum Computing Tutorials from DWave System

I have been watching several quantum computing tutorial videos on YouTube and Ted, and, reading multiple web pages to find out one or more videos / documents which could make it easier for anyone to understand quantum computing and related concepts.

This is where I landed on this document Quantum Computing Primer by DWave Systems.

The following are some of the document highlights:

  • Explained quantum computing concepts such as qubits being in superposition of states using light switches with ON and OFF states with reference to both classical and quantum computing. The following is the most interesting part of Qubits explanation:
    • You start with the system in its quantum superposition as described above, and you slowly adjust the quantum computer to turn off the quantum superposition effect. At the same time, you slowly turn up all those bias values (the h and J’s from earlier). As this operation is performed, the switches slowly drop out of their superposition state and choose a classical state, either ON or OFF. At the end, each switch MUST have chosen to be either ON or OFF. The quantum mechanics working inside the computer helps the light switches settle into the right states to give the lowest overall value when you add them all up at the end.
  • The diagram below represents the explanation given in above point where the light switches drop out of their superposition state and choose a classical state. The quantum mechanics helps the light switches (representative of qubits) choose the right states (of qubits) to give the required outcome.

    quantum computing tutorial using light switches

  • Quantum computers perform the computation in fundamentally different ways than classical computers.
  • Quantum computers can learn as like classical computers based on machine learning concepts.
  • Quantum computing is probabilistic, meaning that it returns multiple answers. This essentially means that a quantum computing processor considers all possible states of qubits to determine the required outcome. Based on some event, the outcome/result is calculated. And, it gives out multiple outcomes/results including one which is most optimal and other possible outcomes.

This document, programming with D-Wave: Map Coloring Problem, explains overall process of quantum computing.

Ajitesh Kumar

I have been recently working in the area of Data analytics including Data Science and Machine Learning / Deep Learning. I am also passionate about different technologies including programming languages such as Java/JEE, Javascript, Python, R, Julia, etc, and technologies such as Blockchain, mobile computing, cloud-native technologies, application security, cloud computing platforms, big data, etc. For latest updates and blogs, follow us on Twitter. I would love to connect with you on Linkedin. Check out my latest book titled as First Principles Thinking: Building winning products using first principles thinking. Check out my other blog, Revive-n-Thrive.com

Share
Published by
Ajitesh Kumar

Recent Posts

Model Selection by Evaluating Bias & Variance: Example

When working on a machine learning project, one of the key challenges faced by data…

2 hours ago

Bias-Variance Trade-off in Machine Learning: Examples

Last updated: 1st May, 2024 The bias-variance trade-off is a fundamental concept in machine learning…

20 hours ago

Mean Squared Error vs Cross Entropy Loss Function

Last updated: 1st May, 2024 As a data scientist, understanding the nuances of various cost…

20 hours ago

Cross Entropy Loss Explained with Python Examples

Last updated: 1st May, 2024 In this post, you will learn the concepts related to…

20 hours ago

Logistic Regression in Machine Learning: Python Example

Last updated: 26th April, 2024 In this blog post, we will discuss the logistic regression…

6 days ago

MSE vs RMSE vs MAE vs MAPE vs R-Squared: When to Use?

Last updated: 22nd April, 2024 As data scientists, we navigate a sea of metrics to…

1 week ago